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ABSTRACT

The dynamic behavior of the vapor flow is analyzed for the
heat pipes with axisymmetric geometry. The results show that the
transient process involves multiple symmetric radial wave
reflections about the symmetry line, as was observed in the two-
dimensional analysis. Each wave reflection causes a significant in-
crease in the local pressure and a large pressure drop along the heat

pipe.

The cost of numerical studies of heat pipe dynamics is prohi-
bitively expensive both in computational time used and in computer
resource allocation. The potential of the Galerkin method is ex-
plored for the heat pipe analysis to significantly reduce the computa-
tional efforts.

Applying a Fourier analysis on the data resulted from the nu-
merical calculations, it is shown that a few first terms of Fourier
series, given the proper trial functions, will satisfactorily represent
the data sets.

Nomenclature

Amn coefficients of series solution
b heat pipe half width

Bmn coefficients of series solution
beam function

specific heat

latent heat of vaporization
thermal conductivity

heat pipe length

mass flux

pressure

input heat flux (W/mz)
radial coordinate; dimensionless
radial coordinate

Reynolds number

beam function

temperature

time

axial velocity

radial velocity

axial coordinate

FEP
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axial coordinate; dimensionless
liquid layer thickness
cigenvalues of Cp

viscosity

eigenvalues of Sy

density

axial mass flux

vertical mass flux

a adiabatic region
c condenser

[ evaporator

e effective

0 initial value
saturation

INTRODUCTION

This study is an extension of earlier work on the dynamics of
the heat pipe vapor fiow and the use of the Galerkin method in the
heat pipe analysis (Issacci et al., 1991 and Issacci and Caton, 1991).
The present study represents the transient analysis of the heat pipe
vapor flow in cylindrical coordinates. The numerical results are
then used to evaluate the potential of the Galerikin method to
significantly reduce the required computational time.

A great deal of effort has gonc into calculation of the
behavior of the vapor phase of a heat pipe. Work by Bystrov and
Goncharov (1983) led to the conclusion that a finite difference solu-
tion would be very costly. They found that the time step nceded for
stable advancement was on the order of 10~ sec or smaller. This
led them to a quasi-two-dimensional (2D) approach based on a sim-
ple cross-stream direction profile. Subsequent work by others such
as Bowman (1987) came to similar conclusions. Bowman now cal-
culates the vapor phase as a 1D process with influence coefficients
(Bowman, 1990). As a result most heat pipe analyscs assume 1D
vapor flow, e.g. Bowman et al. (1990) and Chow and Zhong (1990).
The one-dimensional assumption is a direct result of the cost of
computation. The use of a 1D model of the vapor phase has, howev-
er, been shown 10 be questionable.
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Experimental work by Galaktionov and Trukhanova (1985)

shows that the temperature profile is not 1D even under steady state -

conditions. Experimental measurements by Marn et al. (1990) show
that when a noncondensible gas is present, its concentration is 2D as
is the temperature profile. This is in contradiction to the usual
planar front approximation used in heat pipe analysis. The results of
2D transient and steady-state analyses by Tien and Rohani (1974),
Faghri et al. (1989) and Jang et al. (1989) show that a 1D model of
the vapor flow does not accurately predict the axial heat and mass
transfer and pressure drop in a heat pipe. These are important con-
siderations if the heat pipe is operated near its design limits.

The cost of two-dimensional numerical studies has been
shown by Bystrov and Goncharov (1983), as mentioned above, Cos-
tello et al. (1986), Issacci et al. (1990) and Issacci et al. (1991) to be
prohibitively expensive both in computer time used and in computer
resource allocation. The computational time needed for calculation
of a start-up process, is about two hours on CRAY 2, depending on
the input heat flux and heat pipe geometry (Issacci et al., 1991). As
a result of the expense associated with computation by numerical
methods, one will not do very many. It is our view that a good sys-
tem design needs to undergo a great deal of analytical scrutiny and
this means one must develop good economical means for doing the
analysis. The heat pipe is just one part of the system and its calcula-
tion should not be costly. This paper explores the feasibility of a
method of efficient computation for the vapor phase of a heat pipe.

It is well known that the Galerkin method will be very
efficient if the trial functions are appropriately selected. For exam-
ple, a one-term approximation will yield fairly good results for flow
in a rectangular duct. The Graetz problem yields good results for
the first eigenvalue when a two term approximation is used. At the
outset it was not clear how many terms would be needed to properly
represent the vapor phase in a heat pipe.

The potential of the Galerkin method for heat pipe analysis
was first explored by Issacci and Catton (1991). Using data sets
from numerical calculations of a 2D heat pipe analysis (Issacci et
al., 1991), they show that a few terms of a Fourier series would sa-
tisfactorily represent the data sets. They used trigonometric func-
tions for the vertical direction and Beam functions for the axial
direction.

Most of heat pipes in engineering applications have, howev-
er, an axisymmetric geometry. Therefore, the numerical code used
in the previous work (Issacci et al., 1991) was improved to deal with
axisymmetric coordinates. The numerical results are then used to
demonstrate the feasibility of a Galerkin method by finding the
proper trial functions for axisymmetric coordinates and showing that
a few terms of a Fourier series will satisfactorily represent the data
sets. A computer code using a Galerkin method then remains to be
written.

It should be noted that our intent is not to develop a comput-
er model of a heat pipe capable of dealing with shock structure.
Shock structure is only of academic interest because the thermal
capacity of the heat pipe walls softens transient behavior to the point
that the vapor phase behaves almost in a quasi-static way. In other
words a steady state model that properly includes certain mult-
dimensional effects will be adequate for system analysis. As we will
show, a few terms in a Galerkin approximation will be adequate for
all but the fastest transients.

DESCRIBING EQUATIONS

A schematic of the vapor flow model used to represent the
heat pipe is shown in Figure 1. The boundary of the vapor core is a
thin porous medium which contains the working liquid. The input
heat flux to the evaporator and the temperature of the outer surface
of the condenser are specified. The planar side walls are assumed
adiabatic.
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The equations describing the vapor flow are the continuiry
momentum, and energy equations, which are time dependent,
viscous and compressible. An equation of state (EOS) is used to re
late pressure to the density and temperature within the vapor core
These equations in axisymmetric coordinates (r,x) are

Continuity
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Initial and Boundary Conditions

The working liquid is assumed initially to be at a low tempera-
ture (close to the freezing point). Further, there is no input heat and
the stagnant vapor is in thermodynamic equilibrium with the liquid.
The boundaries of the vapor core are shown in Fig. 1. A no-slip,
impermeable condition for the velocity and an adiabatic condition
for the temperature are assumed on the side walls,

u=0, v=0, oT/ox=0 @ x=0L (©

On the center line, the symmetry condition requires,

du/dr=0, dT/or=0 @ r=0 (0

v=0,

~ In order to assign boundary conditions at the liquid-vapor
interface, the liquid flow is assumed to be in a porous medium of
thickness 8 which is much smaller than the vapor core diameter. The
axial velocity is assumed zero on this boundary,

u=0 @ r=R, )]
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Figure 1. Vapor flow model in a heat pipe

To assign boundary conditions for the temperature and vertical velo-
city, the liquid-vapor interface is divided into three regions. In the
evaporator zone the input heat flux, Q, is a given parameter and the
input flow is approximated atr=Rg and 0 S x <L, by

pv=m =Q/ hg(T), T=Twu@ (&)

where hyg is the heat of vaporization and m is the input mass flux. In
the adiabatic zone, the boundary conditions are

v=0, oT/or=0 @ r=Ry L.<xS(LAL)(10)

In the condensation zone the temperature T, at the outer sur-
face is given, By equating the heat of evaporation to the heat con-
duction in the liquid layer, the mass flux to the wall is approximated,
atr=Rgand (L.+L,) <x <L, by

pv=ri1=-——k€—fr

)

T-T,

11
o an

T = Tu(p)

where kg is the effective conductivity of the liquid layer and the

temperature is assumed to be the saturation temperature correspond-
ing to the pressure at the interface.

SOLUTION METHOD.

The five equations (1)-(5), with the initial and boundary condi-
tions given by equations (6)-(11), have been numerically solved for
the five variables p, pu, pv, T, and p using a real ime computational
procedure with a step change in wall heat flux at tme t = 0. A
finite-difference method has been used. The governing equations are
highly nonlinear. For high-input heat flux, a high gradient velocity
profile is created in the evaporator during the initial stages of the
problem. Therefore, a shock capturing scheme is needed to accu-
rately calculate the vapor flow variables. The solution method for
the transient behavior of the vapor flow is described in Issacci et al.
1991). It was shown that a nonlinear filtering technique could suc-
cessfully capture the shock-like velocity profiles. In an actual heat
pipe, a step change in input heat flux to the vapor core is not
expected. The shock like behavior dealt with by the numerical pro-
cedure will not be necessary.

FOURIER ANALYSIS
The Galerkin method used here represented by a Fourier

analysis of the dependent parameters of the problem. One assumes
an approximation for the parameter of interest,

- s n -
144 ' '
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- M N
pu= Y T Am fm (x) gn (1) (12)
m=1 n=1
substitutes into the governing equation
L (pu)=¢ (13

then weights and integrates and sets the error € to zero,

[JL (W) faga(ixdr=0, m=1,..M n=1_.N(14)

xr

to obtain an equation(s) for the coefficients Agy.

For multi-dimensional compressible flows, this approach
requires a great deal of tedious algebra. Before setting out to do this,
we decided that the efficacy of the method should be tested. This
was first done by Issacci and Catton (1991) using data sets from the
numerical calculations of a 2D heat pipe analysis. Here, the numeri-
cal results of the analysis for the axisymmetric coordinates are used
to find the proper trial functions and determine how many terms
would be needed in the approximation.

_ The functions chosen to represent the problem parameters must
satisfy the proper boundary conditions. It is particularly helpful,
although not necessary, to choose orthogonal functions. A scries
solution for the axial mass flux, pu, that has the proper symmetry
and satisfies the proper boundary conditions is

x-L/2
L
x-L/2
L

pux,r,t) = ¥ Apn(t) Cr(h ) Jo(¥aT/Ro) +
mn

T A mn () S

mn

) Jo(¥aT/Ro) (15)

The vertical mass flux, pv, must be selected so that in the steady
state limit :

10prv __ dpu

— o 16)
::p r;vscgll\ma:isonse:}t]i:% ogsfhr?sp;:ate boundary conditions. A series
P10 = L) Cnlhm ™ =2 51 @ur/Ro) +
PLESCEATS =L 51 @ur/Ro) (17)
Scaling x and r,
R=r/Ry and X=x/L-1/2 (18)
yields
puX,R,0) = T Apn(t) Cn(AmX) Jo(YaR) +
:%‘;:A'm(t) SmHmX) Jo(rR) 19
PVX,R,1) = ¥ Brp(t) Crn A X) [ (BrR) +
z B’:(t) S'm(BmX) J1 (BaR) (20)

mn



The functions C, and S, and their first derivatives C’,, and
S’q, which are used for expansion in the x-direction, are orthogonal
and vanish together with their first derivatives at the end-points,
x =0 and L. Such functions prove to be particularly useful in obtain-
ing approximate solutions of the higher-order diff}t’:rential equations
which arise in problems of hydrodynamics and hydromagnetic
stability (Chandrasekhar, 1961). These functions are defined as

coshAi,X cosApX

Co OmX) = cosh Ay /2 " cos Am/2 @y
Calu M R T @
S (X / g = cosh u, X cos X 24)

"~ sinh P /2 " Sin /2

where Ay and py, (m =1, 2, 3, ...) are the positive roots of the equa-
tions

tanh A, /2 +tan A, /2=0
coth i /2 —cot Py, /2=0

25)
(26)

The orthogonality properties of the normalized functions Cp
and S, are

172

| C X Cp A X) dX = 81y

-172
1/2
< | Sm (mX) Sp (110 X) dX = 8 @n
-1/2
where 8, is the Dirac delta function, and
1/2
f Cn XS, X dX=0 (28)

-112

The first four roots of equations (25) and (26) are presented in Table
1. For m > 4 the roots are found from

An=(Q2m-1/2)x ; Bp=Cm+1/2)x 29
The functions Cy, and S, and their first three derivatives form =1,
., 4 are tabulated by Hamris and Reid (1958). Reid and Harris

(1958) have also provided a useful sets of integrals involving the C-
and the S-functions.

In equations (15) and (17), Jo and J, are Bessel functions of
zero and first order. Y, and P, are the eigenvalues of these func-
tions, respectively, and are tabulated in Table IL.

The coefficients in the scrics representations are found by
Fourier analysis of the numerical data obtained from the transient
analysis explained above,

1/2 1

Apa= | JR(PUCHORXIo(¥R/2)RAX

-1/20

(30
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12 1

Am= | JROWSnEX)To(R/2)RAX 31
-1/20
172 1
Bra= | JR(OVCmOmX)) (hR/2)ARAX 32)
-1/20
12 1
Ban= | JREVS mHmX0) (1uR/2)ARAX 33)
-1/20
RESULTS AND DISCUSSIONS

For the results shown in this ssction. the working fluid is liquid
sodium at, initially, po = 105' N/m#* and T = 800K. The geometric
dimensions are Rg =5 cm, L, =L, =L, = Rg. The results shown in
the following sections are for the transient flow patterns in the vapor
core and the Fourier analysis of these results.

Flow Patterns

Figure 2 shows the flow patterns in the vapor core for a high-
input heat flux, Q= 10* W/m?. The Reynolds number based on the
vapor core diameter is Re = 200 and the computations were done for
an optimized grid of 41 x 121. The optimized computational grid
was chosen by inspection of the calculated L2-error (see Issacci et
al., 1990). The transient development of the radial mass flux pv at
different times is shown (Fig. 2). At t = 0, the vapor is stagnant.
Evaporation takes place as the input heat flux is applied. Since the
input heat flux is high, a shock-like wave is created (Fig. 2a). The
vapor flow develops above the evaporator and in the adiabatic
region and the wave travels above the evaporator until it hits the
center line (Fig. 2b) where the radial mass flow is blocked, pv=0.
At this point, the vapor is compressed and the vapor pressure
increases which causes a negative radial pressure gradient and the
wave reflects back (Fig. 2c). The figure also shows reverse flow in
the bottom left corner which is caused by wave reflection. When the
reflected wave reaches the upper boundary (Fig. 2d) and the vapor is

Table 1. The First Four Eigenvalues of the Beam Functions

m An [T

1 4.730040 7.853204
2 10.995607 14.137165
3 17.278759 20.420352
4 23.561944 26.703537

Table II. The First Six Eigenvalues of the Bessel's Functions

n Ya B

1 2.4048 1.84118

2 5.5201 5.33144

3 8.6537 8.53632

4 11.7915 11.70600
5 14.9309 | 14.86359
6 18.0711 18.01553
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Figure 3. Coefficients Aj, and Apy for different n and m

compressed within the evaporation region, the radial pressure gra-
dient is reduced and the inflow mass flux tries again to fill the eva-
poration region (Fig. 2¢). As the vapor fills the evaporation region,
another wave reflection occurs. Each reflection of the shock-like
wave causes a significant increase in the local pressure and, conse-
quently, a large pressure drop along the heat pipe.

The wave reflections in the evaporation region also affect the
flow pattern in the adiabatic region. Figure 2d shows that when the
reflected wave reaches the upper boundary of the evaporator, circu-
lation is initiated in the adiabatic region. Figures 2f and 2g demon-
strate the subsequent set of reflection and refill of the vapor flow.
When the process reaches steady-state conditions, circulation in the
adiabatic region occupies a significant portion of the region.

The transient flow pattern in the condensation region is also
illustrated in Fig. 2. At early stages of the transient process, the
vapor is at the same temperature as the liquid and, as a result, there
is no condensation (no outflow, Figs. 2a and 2b). When vapor at
higher temperatures flows from the evaporator to the condensation
region, the vapor temperature in the condenser increases. A tem-
perature gradient is thus established along the liquid layer and con-
densation takes place (Fig. 2d). The vapor temperature in the con-
denser increases with time and, consequently, the condensation rate
increases. At steady state, shown in Fig. 2h, the mass flow through
the evaporator equals the mass flow out of the condenser.

The same type of flow patterns and wave reflections was also
observed in the fransient analysis of heat pipe using Cartesian coor-
dinates (Issacci et al., 1991). In that study, speculation was that for
axisymmetric coordinates, wave reflections in the evaporation
region and flow reversal in the adiabatic region would not occur.
The present study shows, however, that this is not the case and for
both geometries high-input heat flux will cause a pressure drop in
the vapor that is significantly higher than that found for steady-state
conditions.

Fourier Analysis of the Data

The results obtained from the above analysis were used to
check the feasibility of using the Galerkin method in heat pipe
analysis. The Galerkin method can be very effective if the first few
coefficients are sufficient to represent the data. Figures 3(a) and
3(b) show the first coefficients of a representative calculation. In
Figure 3(a) it is shown that the first two coefficients in the y-
direction (index -n) are the dominant ones. The same is true for the
coefficients in the x-direction (index -m) shown in Figure 3(b).

Figures 4 and 5 show the few first coefficients as functions of
time for different input heat fluxes for axial and radial mass fluxes,
respectively. The periodic oscillations of these coefficients with
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time is caused by the multiple wave reflections in the evaporator as
shown in Fig. 2. Figures 4 and 5 imply that the mean behavior of
the coefficients can be predicted by an exponential asymptote.

The presence of shock-like features in the solution, shown in
Fig. 2, poses an extreme challenge to expansions in orthogonal func-
tions, which lack the shock-capturing capability. Although once the
shock dissipates the expansion coefficients exhibit a decent decay
(Figs. 3 to 5), they decay slowly at the start. This implies that at
early stages of the transient process, large number of terms in the
expansions are needed to accurately represent the solution. Under
these conditions, the Galerkin method could lose its advantages over
the finite-difference method.

After a short time, Figs. 3 to 5 show significant decay in the
oscillations. As a result, the number of terms in the expansions
decreases significantly with time. Furthermore, in an actual heat
pipe, the thermal capacity of the walls softens the transient behavior
and a step change in the input heat flux to the vapor core is not
expected. Under these conditions, the number of terms in the
expansions are few and the Galerkin method can successfully be
used in the heat pipe analysis.

One of the major conclusions of previous studies of the
dynamic behavior of vapor flow in heat pipes is that, in the complete
analysis of heat pipes, the vapor flow can be assumed quasi-steady
state. This conclusion is based on the fact that the characteristic time
of the vapor flow is significantly smaller than that of the liquid flow.
Under assumption of quasi-steady state, the coefficients of the series
solutions will only be functions of the input heat flux. Figure 5
shows dependency of the few first coefficients on the input heat flux
at steady state. These figures suggest that the coefficients can be
represented by a polynomial in terms of log Q, where Q is the input
heat flux applied to the evaporator. A general formulation for this
dependency is assumed as

COEFF = a, +a, log Q +a; (log Q)? (34)

where COEFF denotes the coefficients Apn, A’ma» B and B'ma.
The constants of the above equation for the first few coefficients are
presented in Table IIL

Figures 7(a) to 7(c) show the axial mass velocity profile under
steady state condition at three different cross sections of the heat
pipe; middle of the evaporator, adiabatic region and condensef,
respectively. The data from the numerical analysis is shown by 2
solid curve. Series solutions with different number of terms are also
shown. In all the figures, it is shown that the calculated data can be
easily represented by the few first coefficients in the series solutions.
The same conclusion can be drawn for the radial mass flux at the
cross section r = 0.25Rg, shown in Figure 8.
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For a steady state or quasi-steady state, a good approximation
can be obtained for pu using a five term approximation, see Figures
3and 4. The result is

pu= A CiX) Jo(nR) + Ay C(A X) Jo(uR) +

A’y S104X) Jo(nR) + A'12 81 (1 X) Jo(12R)
Az Ca(A2X) Jo(nR) + (35)

Using the coefficients presented in Table III, pu at steady state can
be represented in terms of the input heat flux as

pu=(0.16 + 0.82 log Q) C; (M X) Jo(nR) +
(-5.08 + 131 log Q) C; A\ X) Jo()aR) +
(0.35-0.17 log Q) S; (4, X) Jo(iR) +
(0.26 - 0.15 log Q) S; (11 X) Jo(R) +
(0.80 - 0.13 log Q) C; (A;X) Jo(1iR) (36)

where Q is in W/M?. Similarly pv at stcady state can be
represented by the following five-term approximation

pv=(0.13-0.1710g Q C; X J;(mR) +
(=0.15 + 0.04 log Q) C'; A\ X) J (R +
(-0.07 +0.03log Q) 8"y W X) J;(MmR) +
0.016 5", (1;X) J;(HR) +
(=0.13 + 0.04 log Q) C2 A2 X) J;(R) 37
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Table III. The Constants in Equation 34
COEFF a, a, a,
A, 0.1572 0.8237 -0.0648
A, -5.0850 1.3067 | -0.1012
A, 0.8018 -0.1357 | 0.01383
Ay, -0.4027 | -0.03903 | 0.008650
A’y 0.3506 -0.1708 | 0.01775
A’y 0.2658 -0.1492 | 0.01720
A’y -0.0402 0.00384 | 0.000800
Ay -0.1440 0.05030 | -0.003825
B, 0.1297 -0.1686 | 0.01465
B,; -0.1562 0.04315} -0.00345
B, -0.1291 0.03765 | -0.00325
B, -0.0055 | -0.001220 | 0.000200
B, -0.0729 0.03284 | -0.003225
B';, 0.0162 | -0.007390 | 0.0007500
B’,, 0.01075 | -0.003135 | 0.0001750
B, -0.000655 | 0.000285 | -0.000025
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Figure 7. Series solutions compared to the calculated axial mass flux at the middle of
(a) evaporator, (b) adiabatic region, (c) condenser
When the quasi-steady approximation is valid, which we believe 04
will most often be the case, one only needs substitute for the instan-
taneous value of Q (W/m*) in the above equations. It is clear that o3 i,
this approach will yield fast economic results for the vapor phase of »
- 02 | N
a heat pipe. //.’ e
g 01| ‘/'.07 X
e
CONCLUSIONS > o —
s X .\ 7.8 Data
The dynamic behavior of the vapor flow is analyzed for the § o1 oy I 25 tgms
heat pipes with axisymmerric geometry. The results show that the AN o 16 terms
transient process involves multiple symmetric radial wave ozt \Nuo'S ST e
reflections about the symmetry line, as was observed in the two- e 9 ferms
dimensional analysis. Each wave reflection causes a significant 03 - 4 terms
increase in the local pressure and a large pressure drop along the os . . ) .
"o 02 04 08 os 1

heat pipe.

The potential benefits from using the Galerkin method has also
been studied for the heat pipe analysis. It has been shown that the
numerical data for the mass flux in different directions can be
represented in a series form. The most complicated mass flux
profile under steady state condition is well represented by first few
terms in the series. Interpolation allows one to deal with different
heat fluxes.

For a given heat pipe, several numerical solutions can be used

to obtain the coefficients in a Galerkin type representation. The
Galerkin representation allows one to represent the dynamic
behavior of the heat pipe for use in space thermal models at very lit-
tle computational cost.
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